Hello!

I am a researcher at the School of Physicsat the University of Bristol (UK), working on nonequillibrium disordered systems with powerful theoretical and numerical techniques.

My focus is on emergent properties, collective behaviour and spatial structure in a wide range of systems: from glasses to animals, from gels to bones.

Probing excitations and cooperatively rearranging regions in deeply supercooled liquids

Supercooled liquids are local equilibrium states where the features of glassy dynamics progressively emerge as we decrease the temperature. We have a broad understanding of what happens in a generic supercooled liquid: the dynamics become slow and highly heterogeneous, motion is gradually more cooperative, and some changes in the local spatial correlations occur accompanied by…

Modelling the force chains in emulsion gels

Force chains are networks of stresses that propagate in complex, distinctive patterns across disordered media. They have been successfully quantified in granular materials and have been a useful concept to rationalise the flow behaviour of such systems. They can be visualised in granular experiments for example with the help of photo-elastic polymers. Granular and colloidal…

Collective behaviour changes with age

Yushi Yang has recently completed his PhD project in Bristol focusing on the collective behaviour of a specific living organism: Zebrafish, a small, semi-transparent fish coming from tropical fresh waters employed extensively in biology as a model organism. Quantitative studies of the collective behaviour of animals have been performed in many different contexts, from midges…

Wetting Transition of Active Brownian Particles on a Thin Membrane

When my 12-month old daughter started pushing her baby walker around the apartment, I noticed how often she ends up stuck against tables, walls, and obstacles in general, as she struggles (or simply does not even try) to turn the walker around. I could not avoid thinking that that was a transparent example of the…

Morphology analysis of bone malformation

Soft matter is a broad field, ranging from colloidal particles to micelles, from proteins to cellular tissues. As I mentioned in a previous post, a physics-based approach to characterising the morphology of soft biological matter can be very insightful. It provides simple, geometrical and structural metrics to identify variation in tissues. We recently demonstrated this…

Phase Separation and Multibody Effects in Active Matter

Self-organisation has many forms, many of which have been studied for systems in equilibrium or metastable equilibrium, as in crystal formation or in gelation. The striking feature of these phenomena is the emergence of complex patterns of aggregation just from elementary interactions among the constituents. These are driven by an imbalance in the thermodynamic potentials…

Perspective on dynamical phase transitions and structure in glassy systems

Liquids are normally considered to be thermodynamically stable. However, rapidly cooled liquids attain a so-called metastable state — the supercooled or undercooled liquid. As we decrease the temperature, these liquids become more and more viscous and structural relaxation becomes slower and slower. One could naively infer that, as the slowing down proceeds, nothing happens in…

Minimal Vicsek model in Python

The Vicsek model is one of the simplest models for active matter. It displays interesting features, such as swarming. Large scale simulations are often needed in order to provide firm statements on the statistical properties of this kind of models. However, for a pedagogical and illustrative purpose it may be useful to have an elementary…

Structural Ordering in Liquid Gallium under Extreme Conditions

Last May, James Drewitt from the School of Earth Science here in Bristol asked me to have a look at his data on ver high pressure and temperature gallium. Used to my idealised particles in box, I thought that it would be interesting to look understand what information can reasonably emerge in this more realistic…

Pentagonal bipyramids and dynamic arrest

Hard colloidal spheres present a certain degree of local ordering that has been in the past described in different (related) ways: one can identify an increased role played by tetrahedral arrangements, or focus on icosahedral or partially icosahedral structures. Expanding on a previous work, James Hallett (now in Oxford) has produced earlier this year a…

Loading…

Something went wrong. Please refresh the page and/or try again.